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Abstract—In this paper, we present a unified graph clustering
framework based on an asynchronous approach. We study the
similarities among the Louvain algorithm and the Infomap
algorithm. Based on their common features, we build an end-
to-end optimized distributed framework for implementing both
algorithms. By extending the existing asynchronous distributed
framework for large-scale graphs traversal, we ensure both work-
load and communication balanced. Our extensive experiments
show that our framework is correct and effective with different
large real-world and synthetic datasets using up to 32,768
processors for the Louvain algorithm and 16,384 processors for
the Infomap algorithm. The quality and the scalability of our
framework are superior to the existing work.

Index Terms—large graph, community detection, graph clus-
tering, parallel and distributed processing, scalability, accuracy.

I. INTRODUCTION

Community detection, or graph clustering, is the problem of
clustering nodes (or vertices) of a graph into different commu-
nities or modules. Although there is no rigorous definition of
community structure, generally an individual community has
dense intra-connections but sparse inter-connections among
them. Various algorithms have been proposed based on dif-
ferent quality measurements of detected communities. Among
these algorithms, the Louvain algorithm [1] and the Infomap
algorithm [2] are two representative methods of agglomerative
community detection. The Louvain algorithm is based on
the modularity metric, while the Infomap algorithm adopts
the map equation. Both algorithms use a greedy approach
that optimizes the measurements by iteratively moving nodes
between communities. Once a sufficiently stable solution is
obtained, the communities are merged to form a new graph on
which the progress is repeated. Compared with the Infomap
algorithm, the Louvain algorithm is relatively fast, but the
quality of detected results is less accurate [3].

It remains an open and challenging problem to develop a
scalable distributed community detection algorithm. This is
largely because real-world large graphs are typically scale-
free graphs, where the vertex degree distribution of such a
graph follows a power law distribution. The existence of high-
degree vertices (or named as hubs) makes it difficult to evenly
partition and distribution such a graph among processors. The
processors assigned with hubs are often associated with high
workload and communication overheads. In addition, it is non-
trivial to effectively synchronize the hub information among

processors, which can impair the accuracy of final community
detection results.

To address this issue, in our previous distributed Louvain
and Infomap algorithms [4], [5], we exploited delegate parti-
tioning to reduce workload and communication imbalance to
boost scalability, where delegates are duplicated hubs among
processors. However, we still found that our results were
not entirely consistent with the sequential algorithms, and
we only showed the scalability of our distributed Infomap
algorithm with up to 4,096 processors. We find that the
synchronization strategy applied with the delegate partitioning
tends to always swap information after each vertex (including
a delegate) calculating a new movement using out-of-date
information, which incurs a loss of accuracy. Besides, this
strategy synchronizes both ghost vertices and delegates, and
can thereby incur a high communication cost.

In this paper, we present new strategies to optimize graph
clustering algorithms based on asynchronous visitor queue,
where the updated information of a vertex can be sent im-
mediately. Our approach can boost both the accuracy and the
scalability. Based on this approach, we develop an optimized
framework unifying the Louvain and Infomap algorithms
with balanced workload and communication cost. We have
conducted extensive experiments using different large-scale
real-world and synthetic graph datasets. With the support of
our new framework, we have demonstrated the effectiveness of
our optimized Louvain algorithm with up to 32,768 processors
and Infomap algorithm with up to 16,384 processors, which
conveys significant improvements over the previous work.

II. RELATED WORK

Based on their architectures, the parallelized Louvain algo-
rithms can be divided into shared memory methods, distributed
memory methods, and GPU methods. For shared memory
Louvain methods, researchers mainly focus on parallelizing
computation. Staudt et al. [6] proposed an ensemble method
with a parallel graph labeling approach. Lu et al. [7] adopted
a graph coloring strategy as a preprocessing step for their
parallel Louvain algorithm. Designing a distributed Louvain
algorithm needs to consider both parallelizing computation and
communication. Zeng et al. [8], [9] designed a unique graph
partitioning approach to balance workload. Their algorithm
used up to 16,384 cores and more than 1 billion edges
of graphs. Que et al. [10] presented a distributed Louvain
algorithm on Blue Gene/Q supercomputer with 8,192 nodes.



Zeng et al. [4] presented a Louvain algorithm by exploiting a
distributed delegate partitioning, and showed the correctness
and the scalability of their algorithm using up to 32,768
processors. In addition, GPU becomes a powerful tool for
implementing efficient parallel Louvain algorithms [11], [12].

There are limited approaches on parallel Infomap algo-
rithms. Bae et al. [13] proposed a shared-memory parallel
Infomap algorithm. In order to process much larger datasets,
Bae et al. [3] presented a distributed Infomap algorithm named
GossipMap. Its scalability was shown on 128 cores. Zeng et
al. [5] developed a distributed Infomap algorithm with a new
heuristic strategy to achieve the convergence of Infomap. Their
results have scaled up to 4,096 processors.

III. PRELIMINARIES

A. Graphs and Community Detection

In a graph G = (V,E), V is the set of vertices (or nodes)
and E is the set of edges (or links). The weight of an edge
between two vertices, u and v, is denoted as wu,v , which is 1
in an undirected unweighted graph. The community detection
problem is to find overlapping or non-overlapping vertices sets,
named communities (or modules), which contain high intra-
community flows but low inter-community flows. In this work,
we only focus on non-overlapping community detection on
undirected unweighted graphs. The existing work [2] shows
that an undirected graph can be easily transferred to a directed
graph. Therefore, our work can be easily extended to directed
graphs. The non-overlapping community set C of a graph G =
(V,E) can be represented as:

∪ci = V, ∀ci ∈ C; ci ∩ cj = ∅,∀ci, cj ∈ C (1)

B. Louvain Algorithm

The Louvain algorithm uses modularity, Q, to measure the
quality of communities detected in a graph, which can be
formulated as :

Q =
∑
c∈C

(
∑c

in
2m
− (

∑c
tot

2m
)2), (2)

where m is the sum of all edge weights in the graph,
∑c
in

is the sum of all internal edge weights in a community c,
calculated as

∑c
in =

∑
wu,v(u ∈ c ∧ v ∈ c), and

∑c
tot is the

sum of all edge weights, calculated as
∑c
tot =

∑
wu,v(u ∈

c∨v ∈ c). The intuition of Equation 2 is that if the modularity
value is high, there are many edges inside communities but
only a few between communities, indicating a high quality of
community detection.

Modularity gain, δQ, is the gain in modularity obtained
by moving an isolated vertex u into a community c ∈ C [1],
which can be computed by:

δQu→c =
1

2m
(wu→c −

∑c
tot ∗w(u)

m
), (3)

where wu→c is the total weight of edges connecting a vertex
u and a community c, and w(u) is the weighted degree of u.
The Louvain algorithm iterates multiple stages for computing a
hierarchical clustering of the vertices in G. Each stage consists

of two phases. In this phase (named vertex movement), each
vertex is considered in turn and moved to a community with
the maximum modularity gain given by Equation 3. The vertex
will remain in its current community if no positive modularity
gain can be achieved. This indeed employs a greedy strategy to
compute graph clustering that optimizes the modularity given
by Equation 2. The algorithm continues iterations until no
further gain can be obtained or if the gain falls below some
predefined threshold. In the second phase, the communities
generated in the first phase are represented as a new graph with
vertices of each community merged into a single new vertex. If
there are multiple edges between different communities, these
coalesce into one edge between the new vertices. The weight
of a new edge is the sum of the weights of all the edges merged
into it. The new aggregated graph is then iteratively input to
the next stage of the algorithm. This whole process continues
until the graph is stable (no modularity change).

C. Infomap Algorithm
The Infomap algorithm is a flow-based information-

theoretic method to assign vertices into communities or mod-
ules for community detection. The algorithm is enlightened by
a duality between the problem of compressing a dataset and
the problem of detecting and extracting significant patterns or
structures within the dataset. The general description of duality
in statistics is known as minimum description length (MDL).
The Infomap algorithm aims to find the structures within a
graph that are significant with respect to how information
flow through the graph. In general, the sequential Infomap
algorithm optimizes MDL to the shortest code length. The
map equation [2] is the objective function of the Infomap
algorithm, which is based on the information flow. The map
equation finds a compressed representation of a set of random
walks through a graph. The map equation can be expressed as
in Equation 4:

L(M) = (
∑

m∈M
qm)log(

∑
m∈M

qm)

− 2
∑

m∈M
qmlog(qm)−

∑
α∈V

pαlog(pα)

+
∑

m∈M
(qm +

∑
α∈m

pα)log(qm +
∑
α∈m

pα),

(4)

where M is the set of communities (or modules), qmis the exit
probability of a community m, pα is the visit probability of a
vertex α during a random walk, and V is the set of vertices
in the graph. L(M) represents the lower bound on the code
length of detected community structure M based on Shannon’s
information theory [14], which is MDL.

The core of the Infomap method also iteratively builds a
hierarchical clustering through multiple stages. Each stage
has two phases. Similar to the first phase of the Louvain
algorithm, each vertex is moved to the neighboring community
that results in the largest decrease of the map equation. If no
movement results in a decrease of the map equation, the vertex
stays in its original community. This procedure is repeated
until no move generates a decrease of the map equation. In
the second phase, the algorithm rebuilds the graph using a
similar method as the Louvain algorithm. The whole process
is repeated until the map equation cannot be reduced further.



Algorithm 1 Sequential Community Detection Framework
Require:

G = (V,E) : undirected graph, where V is vertex set and E is edge set;
γ : per-iteration quality improvement threshold.

Ensure:
M : resulting community or modules;
L: resulting measurement.

1: M = {{vi }|vi ∈ V }
2: L = L(M)
3: repeat
4: Lprev = L
5: randomize the order of vertices
6: for all u ∈ V do
7: mnew = bestNewCommunity(M,ui)
8: Move ui to mnew community, and update M and L
9: end for

10: until Lprev − L < γ
11: return M

D. Sequential Community Detection Framework

Through the basic analysis of the Louvain and Infomap
algorithms, we can find that as agglomerative graph clustering
they both follow two similar phases, which are vertex move-
ment and graph rebuilding. We generalize both algorithms in
Algorithm 1. In Algorithm 1, we treat each vertex as one
community initially as Line 1. In Line 4, we calculate the
initial measurement L of the graph. In our case, this can be
modularity for Louvain, or MDL for Infomap. From Line 5 to
Line 10, the algorithm optimizes the communities using the
greedy strategy. For each vertex, the algorithm calculates its
best movement by modularity gain δQ for Louvain , or δMDL
for Infomap. The vertex will move to the best community that
can achieve maximum optimization. The algorithm will repeat
this process until the change of L is less than a predefined
threshold γ. The communities will be merged into a new
graph, where each vertex represents one community and each
edge represents all the edges connecting different communi-
ties. The algorithm will output the detected communities as
the final output.

E. Distributed Community Detection Framework

In our previous work, we have developed distributed Lou-
vain [4], [8], [9] and Infomap [5] algorithms by carefully
investigating the communication and workload patterns of
Louvain and Infomap. Our algorithms have achieved more
accurate community results and more scalable performance
compared to the existing approaches. We demonstrated the
effectiveness of our distributed Louvain algorithm with up
to 32,768 processors, and our distributed Infomap algorithm
with up to 4,096 processors, which are clearly superior to the
previous work.

Although different measurements of communities are used
in the Louvain and Infomap algorithms, our existing dis-
tributed Louvain and Infomap algorithms were designed based
on Algorithm 1 and shared considerable similarities. The gen-
eralized distributed algorithm can be expressed in Algorithm 2
that consists of four stages:

In the first stage (Line 1), the algorithm uses a delegate
partitioning and distribution strategy to divide the input graph

Algorithm 2 Distributed Community Detection Framework
Require:

G = (V,E) : undirected graph, where V is vertex set and E is edge set;
p : processor number.

Ensure:
M : resulting communities or modules;
L: resulting measurement;
δL: change of L.

1: Distributed Delegate Partitioning(G, p)
2: repeat
3: Parallel local clustering with delegates
4: Broadcast delegates achieving the highest δL
5: Swap ghost vertex community states
6: Update community information on each processor
7: until No vertex community state changing
8: Merge communities into a new graph, and partition the new graph using

1D partitioning
9: repeat

10: repeat
11: Parallel local clustering without delegates
12: Swap ghost vertex community states
13: Update community information on each processor
14: until No vertex movement
15: Merge communities into a new graph
16: until No improvement of L
17: return M

among processors. In particular, hubs are duplicated as dele-
gates among processors to ensure that each processor has a
similar number of edges. In the second stage (Lines 2 to 7),
the algorithm first detects the best community movement of
a vertex as Line 3. It then broadcasts the information of
delegates that achieve the maximum δL. This can ensure each
delegate to have consistent community movement information
and δL. After the communication from Lines 4 and 5, local
community information is updated in Line 6. This process
continues until there is no more community change for each
vertex. In the third stage (Line 8), the algorithm forms a new
graph from the communities. The new graph is several order
smaller than the original graph, and thus is partitioned using
a simple 1D partitioning [15]. In the fourth stage (Lines 10
to 14), the algorithm processes the subgraphs in a way similar
to the second stage, except there are no delegated vertices
in the subgraphs. The algorithm stops when there is no
improvement of L.

IV. OUR APPROACH

A. Rationale

Although we have achieved superior performance in dis-
tributed community detection using Algorithm 2, there re-
mains a fundamental bottleneck in Lines 4 and 5 that uses a
synchronization strategy to make the community information
consistent among the processors, and has two limitations.

First, after finishing local clustering at Line 3, each proces-
sor needs to be synchronized before exchanging the commu-
nity information. This incurs a performance lost.

Second, this can incur the vertex bouncing problem [7]
when processors concurrently exchange the latest snapshot
information of their local subgraphs. It is due to ghost vertices
that may be shared by multiple processors in a distributed
environment, which can be illustrated using a simple example



Fig. 1. The vertices vi and vj are supposed to be in the same community.
However, after swapping community information, they are still in the different
communities.

in Figure 1, where two vertices vi and vj are the endpoints of
an edge. They are located on two different processors, PE0

and PE1. On PE0, the vertex vi is the local vertex and the
vertex vj is the ghost vertex, and vice versa on PE1. On each
processor, a vertex with a green circle denotes a ghost vertex.
Initially, a vertex is in its own community of size one and the
community ID is the vertex ID, i.e., C(vi) = i and C(vj) = j,
where the function C denotes the community ID of a vertex
or a community. After calculating the improvement of local
measurement L, both vertices move to each other’s community
on their local processors to increase the local measurement
gain, i.e., C(vi) = j on PE0 and C(vj) = i on PE1, as shown
on the blue dash arrows in Figure 1. However, this cannot
achieve any global improvement of L. This phenomenon can
incur the vertex information bouncing between two different
communities, and thus inhibit the convergence of the algo-
rithm, which has not been fundamentally addressed in the
existing approaches [4], [5], [7].

These two limitations are rooted in the synchronization
strategy. We can easily see that in the sequential framework,
a vertex can always find the best community that archives the
maximum optimization using the instantaneous information
of the global graph (Line 7 in Algorithm 1), and then move
to a community according to the greedy strategy (Line 8 in
Algorithm 1). However, such instantaneous information of the
entire graph cannot be easily obtained in a distributed envi-
ronment using the synchronization strategy. This is because a
processor must wait for synchronizing with other processors to
exchange information, and during this period, other processors
may already have certain local changes.

To address this issue, one possible way is to let a processor
immediately send its local update to other processors. Given
the simple example in Figure 1, if C(vi) is first changed on
PE0 and then immediately sent to PE1, PE1 can update
C(vj) according to the received information and make vi
and vj in the same community. This is also held if C(vj)
is first changed on PE1. In this case, the asynchronous
communication can send the latest local update on a processor
to other related processors. Therefore, the local clustering
at each processor (Line 3 in Algorithm 2) can always use
the instantaneous global information, and generate the results
similar to the sequential algorithm.

B. Highly Asynchronous Visitor Queue Graph

There are a few existing approaches for asynchronous com-
munication. Among them, HavoqGT (Highly Asynchronous

TABLE I
HAVOQGT VISITOR ABSTRACTION

pre visit Evaluation of whether the visitation should proceed
visit Main visitor procedure
visitor Stored the state of the vertex to be sent
bcast delegates Controller broadcasts the current visitor to all delegates
make visitor Change the vertex into visitor

Visitor Queue Graph Toolkit) [16] facilities distributed graph
traversal using an asynchronous visitor abstraction [17]. The
framework is based on delegate partitioning. For each dele-
gated vertex, one of its delegates will be chosen as a master
and the others will be controllers. The visitor abstraction
allows us to define vertex-centric procedures that execute on
vertex, and offers the ability to pass visitor state to other
vertices. The visitor procedures and the state to be defined in
the visitor are summarized in Table I. In the original HavoqGT
graph traversal algorithm, when an algorithm starts, an initial
set of visitors are pushed into the queue and the framework’s
driver invokes the traversal. The asynchronous traversal com-
pletes when all visitors have completed. We leverage HavoqGT
to optimize distributed community detection algorithms.

C. Asynchronous Vertex Movement

According to Algorithm 1, when we move one vertex into
one community, we can obtain a delta value δvc→c′ . For
the Louvain algorithm, δvc→c′ = δQvc→c′ . For the Infomap
algorithm, δvc→c′ = δMDLvc→c′ . As both algorithms adopt
a greedy strategy, after moving all vertices, new modularity
Q′ and MDL′ can be written as:

Q′ = Q−
∑
v∈V

δvc→c′ ;MDL′ =MDL+
∑
v∈V

δvc→c′ . (5)

As we described previously, only when the vertex achieving
the maximum modularity gain (the value is larger than 0) or
the largest decrease of map equation (the value is smaller than
0), we move the vertex to the corresponding community.

In the asynchronous framework, when a vertex moves, it
will affect its neighbors’ movements. Therefore, when we send
a vertex movement message to other processors, we should
send not only the community index of the vertex, but also the
delta information of the community that is affected by this
vertex movement. This delta information can be implemented
using visitor. As illustrated as List 1 and List 2, we can
easily record the community change information when moving
vertex. The information includes:
• Movement information: record the vertex moving from

source community to destination community.
• Community delta information: record the community in-

formation change when moving the vertex. For the Lou-
vain algorithm, the information is deltaTot and deltaQ,
which are the changed total degree of one community and
the modularity gain of that movement. For the Infomap
algorithm, similar information can be described from
Line 6 to Line 13 in List 2.



List 1 Louvain Visitor
1: struct {
2: // original community ID
3: uint64 t srcMod;
4: // destination community ID
5: uint64 t dstMod;
6: // δtot of the community
7: uint64 t deltaTot;
8: // modularitygain
9: double deltaQ;

10: } Louvain V isitor;

List 2 Infomap Visitor
1: struct {
2: // original community ID
3: uint64 t srcMod;
4: // destination community ID
5: uint64 t dstMod;
6: // δsourcecommunityoutflow of the community
7: double deltaSrcOutF low;
8: // deltadestinationcommunityoutflow
9: double deltaDstOutF low;

10: // nodesize
11: double ndSize;
12: // MDLchange
13: double δMDL
14: } Infomap V isitor;

D. Optimized Parallel Community Detection

Algorithm 3 shows the unified optimized graph clustering
framework that follows the same two phases as the sequential
Louvain and Infomap algorithms. From Line 3 to Line 5, this
phase is local clustering with asynchronous vertex movement.
That is, when a processor moves its local vertex to another
community and the vertex is a ghost on the other processors,
the vertex movement information will be sent to other pro-
cessors in an asynchronous manner. We refer this phase in
our framework as Asynchronized Vertex Movement. In Line 6,
the framework merges the clustered graph into a new graph,
corresponding to the second phase in the sequential algorithms.

Prior to providing more details about Asynchronous Vertex
Movement, we need to redefine the primitives in the Havo-
qGT framework, as shown in Algorithm 4. The function
pre visit() (Lines 1 to 10) is used to check whether the
vertex should be processed immediately or not. The function
visit (Lines 12 to 15) is used to push a vertex visitor into a
queue. The function process pending queue (Line 17 to 27)
is used to process the received visitors. If a received visitor is
a delegate and belongs to the current processor, the algorithm
will find and broadcast the best optimum among all these
delegates, and update the local community information.

In Algorithm 5, we show the details of Asynchronous Vertex
Movement for the Louvain algorithm. Unlike our previous
synchronized Louvain algorithm [4], we use the functions
visit (Line 14) and process pending queue (Line 15) to
swap the information and process the received information
asynchronously. The Asynchronous Vertex Movement for the
Infomap algorithm is similar, and the only main modification
is to compute the change of MDL, rather than modularity.

Algorithm 3 Unified Optimized Community Detection Frame-
work
Require:

G = (V,E) : undirected graph, where V is vertex set and E is the edge
set;
p : processor number.

Ensure:
M : resulting communities or modules;
L: resulting measurement;
δL: change of L.

1: repeat
2: Delegate partitioning
3: repeat
4: Local clustering with duplicates using asynchronous vertex move-

ment
5: until No vertex community state changing
6: Merge communities into a new graph
7: until No improvement of measurement

Algorithm 4 Modified HavoqGT Primitives
1: function pre visit()
2: if firstSelfVisit then
3: return true
4: else
5: priority = delegated?1:0
6: if caller priority > priority or (caller priority == priority

and caller.ID < this.ID) then
7: this.wait count++;
8: return false
9: end if

10: end if
11:
12: function visit(graph, queue)
13: if vertex is ghost vertex of others or vertex is delegate then
14: queue.insert(make visitor(vertex))
15: end if
16:
17: function process pending queue(visitor)
18: repeat
19: if visitor is delegate and visitor belongs to current PE then
20: find visitor with the best visitor.optimum
21: bcast delegates(visitor)
22: update local community information
23: else
24: update local community information
25: end if
26: queue.popup()
27: until queue is empty

V. EXPERIMENTAL RESULTS

We have evaluated both the quality and scalability of
our framework with the existing sequential and distributed
algorithms using the synchronization strategy, specifically, the
previous distributed Infomap [5] and Louvain [4] algorithms.
Table II shows the datasets at different scales used in our
experiments1. Each of the three large real-world datasets (i.e.,
WebBase-2001, Friendster, and UK-2007) contains more than
1 billion edges. Besides the real-world datasets, we also
use R-MAT [18] and BA (Barabasi-Albert) [19] to generate
large synthetic datasets. Our graph clustering framework is
implemented by MPI and C++. Our experiments have been
performed on Titan, a supercomputer at the Oak Ridge Lead-
ership Computing Facility. At the time of our experiments,

1Given the page limit, we only show the results of some datasets for each
test. We have gained the same observation for the other datasets in each test.



Algorithm 5 Asynchronous Vertex Movement
Require:

Gs = (Vs, Es): undirected subgraph, where Vs is vertex set and Es is
the edge set;
Vs = Vlow ∪ Vhigh: subgraph vertex set, where Vlow is low-degree
vertices and Vhigh is global high-degree vertices;
C0
s : initial community of G0

s;
θ: modularity gain threshold;
PEi: local processor.

Ensure:
CPEi

: local resulting community;
QPEi

: local resulting modularity;
Q: global resulting modularity.

1: k = 0 // k indicates the inner iteration number
2: for all u ∈ V ks do
3: Set Cku = u
4: Set mu = 0

5: Set
∑Ck

u
in = wu,u, (u, u) ∈ Ek

6: Set
∑Ck

u
tot = wu,v , (u, v) ∈ Ek

7: end for
8: repeat
9: for all u ∈ Vlow ∪ Vhigh do

10: if Cuk
′
= argmax(δQ

Ck
u→Ck′

u
) > mu then

11: C(u) = min(C(Ck
′
u ), C(Cku))

12: end if
13: end for
14: visit()
15: process pending queue()
16: for all u ∈ Vlow ∪ Vhigh do

17:
∑Ck

u
tot =

∑Ck
u

tot −w(u);
∑Ck

u
in =

∑Ck
u

in −wu→Ck
u

18:
∑Ck′

u
tot =

∑Ck′
u

tot +w(u);
∑Ck′

u
in =

∑Ck′
u

in +w
u→Ck′

u
19: end for
20: //Calculate partial modularity
21: QPEi

= 0
22: for all c ∈ CPEi

do

23: QPEi
= QPEi

+
∑Ck

u
in

2m
− (

∑Ck
u

tot
2m

)2

24: end for
25: Q = Allreduce(QPEi

)
26: k = k + 1
27: until No modularity improvement

each compute node has contained a 16-core 2.2GHz AMD
Opteron processor and 32GB memory.

A. Community Quality Analysis

We compare the quality among the existing sequential al-
gorithms, the distributed algorithms using the synchronization
strategy [4], [5], and our new distributed algorithms using the
asynchronous strategy. We first compare the vertex merging
rate among the algorithms. The merging rate is the merged
vertex number of each iteration compared to the original

TABLE II
DATASETS.

Name Description #Vertices #Edges
Amazon [20] Frequently co-purchased products from Amazon 0.34M 0.93M
DBLP [20] A co-authorship network from DBLP 0.32M 1.05M
ND-Web [21] A web network of University of Notre Dame 0.33M 1.50M
YouTube [20] YouTube friendship network 1.13M 2.99M
LiveJournal [22] A virtual-community social site 3.99M 34.68M
UK-2005 [23] Web crawl of the .uk domain in 2005 39.36M 936.36M
WebBase-2001 [22] A crawl graph by WebBase 118.14M 1.01B
Friendster [23] An on-line gaming network 65.61M 1.81B
UK-2007 [23] Web crawl of the .uk domain in 2007 105.9M 3.78B
R-MAT [18] A R-MAT graph satisfying Graph 500 specification 2SCALE 2SCALE+4

BA [19] A synthetic scale-free graph based on Barabasi-Albert model 2SCALE 2SCALE+4

Fig. 2. Comparison of vertex merging rate among the existing equential
Infomap algorithm, the existing distributed Infomap algorithm using the
synchronization strategy [5], and our new Infomap algorithm.

Fig. 3. Comparison of vertex merging rate among the existing sequential
Louvain algorithm, the existing distributed Louvain algorithm using the
synchronization strategy [4], and our new Louvain algorithm.

graph vertex number. As shown in Figure 2 (Infomap) and
Figure 3 (Louvain), compared with the existing algorithms
using the synchronization strategy, the convergence of our new
algorithms is more similar to the sequential algorithms’.

Figure 4 compares each iteration’s MDL among the In-
formap algorithms. Through an asynchronous visitor queue,
our new distributed algorithm can achieve a similar quality
as the sequential version. Figure 5 compares each iteration’s
modularity among the Louvain algorithms. Our new algorithm
can also achieve similar results as the sequential algorithm.
The modularity of the existing distributed Louvian algorithm
is generally lower than the sequential algorithm in each
iteration. Moreover, through the asynchronous approach, our
new distributed algorithm can converge with the same number
of iterations as the sequential algorithm, while the existing
distributed algorithm using the synchronization strategy often
needs more iterations to coverage.

We have also examined other quality measurements includ-
ing Normalized Mutual Information (NMI) and F-measure,
where a high value corresponds to high quality [9]. Table III
shows the results for the Amazon dataset among the existing
distributed Infomap [5] and Louvain [4] algorithms using the
synchronization strategy and our new algorithms. We can find



Fig. 4. Comparison of MDL among the existing sequential Infomap algo-
rithm, the existing distributed Infomap algorithm using the synchronization
strategy [5], and our new Infomap algorithm.

Fig. 5. Comparison of modularity among the existing sequential Louvain al-
gorithm, the existing distributed Louvain algorithm using the synchronization
strategy [4], and our new Louvain algorithm.

that all the values of our new algorithms are over 0.9, and
considerably higher than the existing distributed algorithms,
which means that our new algorithms can achieve more similar
results as the sequential algorithm.

Our results clearly show that our unified framework has
improved the community quality of both the Infomap and
Louvain algorithms, compared to the previous work. This
is mainly because the asynchronous approach can exchange
updated information immediately, rather than possibly out-of-
date synchronized information.

B. Scalability Analysis

In order to quantify the scalability of our algorithm, we
measure the parallel efficiency, more specifically, the relative

TABLE III
COMPARISON OF QUALITY MEASUREMENTS AMONG THE DISTRIBUTED

INFOMAP [5] AND LOUVAIN [4] ALGORITHMS AND OUR NEW
ALGORITHMS WITH THE AMAZON DATASET.

NMI F-measure
Existing Distributed Infomap w/ Synchronization [5] 0.82 0.81
Existing Distributed Louvain w/ Synchronization [4] 0.85 0.81
Our New Distributed Infomap 0.96 0.93
Our New Distributed Louvain 0.94 0.92

(a)

(b)

Fig. 6. Relative parallel efficiency of our new distributed Infomap (a) and
Louvain (b) algorithms using different small and large real-world datasets.

Fig. 7. Strong scaling test using the R-MAT and the BA with the global
vertex size of 230 for the existing distributed Louvain algorithm using the
synchronization strategy [4], and our new Louvain algorithm.

parallel efficiency τ = p1T (p1)/(p2T (p2)), where p1 and
p2 are the processor number, and T (p1) and T (p2) are their
corresponding running time. In Figure 6, we show the relative
parallel efficiency of our new distributed community detection
framework for the small and large real-world datasets. For the
baseline of each dataset, we use the running time on a minimal
number of processors that can suitably handle the data size.
Specifically, we use the running time on 16 processors for
Amazon, DBLP, and ND-Web, 64 processors for YouTube,
256 processors for UK-2005, Webbase-2001, and Friendster,
and 1024 processors for UK-2007. We can find in our unified
framework, both the new distributed Louvain and Infomap
algorithms can achieve around 75% to 85% relative parallel
efficiency, which proves the scalability of our framework on
real-world datasets.

We also examine the scalability using the synthetic datasets
generated by R-MAT [18] and BA [19], where we set the
vertex scale to 30 and the edge scale is 34. Figure 7 shows the
results of the existing distributed Louvain algorithm using the
synchronization strategy [4], and our new Louvain algorithm.
Both algorithms can achieve nearly linear strong scalability.
For R-MAT, the time of the existing Louvian algorithm was
reduced from 194.15 seconds to 60.32 seconds, and the time of



Fig. 8. Strong scaling test using the R-MAT and the BA with the global
vertex size of 230 for our new Infomap algorithm. The existing distribute
Infomap algorithm [5] did not show the results using such large datasets and
large numbers of processors.

our new Louvain algorithm was reduced from 189.15 seconds
to 56.22 seconds, when we increased the processor number
from 8,192 to 32,768. For BA, the time of the existing Louvian
algorithm was reduced from 302.16 seconds to 95.45 seconds,
and the time of our new Louvain algorithm was reduced
from 282.16 seconds to 84.25 seconds. Using these very large
synthetic datasets with up to 32,768 processors, the relative
parallel efficiencies of the existing algorithm and our algorithm
are approximately 80% and 84%, respectively. Moreover, the
time of our new algorithm is lower as the synchronization
stalls are eliminated.

Figure 8 shows the results of our new Infomap algorithm.
For R-MAT, the time of our Infomap algorithm was reduced
from 334.55 seconds to 120.91 seconds, when we increased
the processor number from 4,096 to 16,384. For BA, the
time of our algorithm was reduced from 454.33 seconds to
150.11 seconds. Thus, our algorithm can archive around 70%
to 76% relative parallel efficiency for these very large synthetic
datasets with up to 16,384 processors. The existing distributed
Infomap algorithm [5] showed the scalability with only up to
4096 processors for the UK-2007 dataset. Thus, our approach
has significantly boosted the scalability of Infomap.

VI. CONCLUSION

We present an unified optimized graph clustering framework
for the Louvain and Infomap algorithms based on an asyn-
chronous approach. It can effectively improve the quality and
the scalability of community detection, and support both Lou-
vian and Infomap algorithms with minimal implementation
overhead. Moreover, our unified framework can be extended
to other agglomerative community detection algorithms by
changing quality metrics for community structure. In the fu-
ture, we would like to further accelerate community detection
using GPUs. In our current CPU-based implementation, the
communication cost is comparably smaller than the compu-
tational cost. Inter-processor communication cost can become
a major bottleneck when the GPU-based clustering time is
significantly reduced. To this end, we plan to investigate
possible ways to reduce the communication cost.
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